TY - JOUR
T1 - A statistical study of transient event motion at geosynchronous orbit
AU - Sanny, Jeff
AU - Berube, David
AU - Sibeck, D. G.
N1 - Sanny, J., D. Berube, and D. G. Sibeck (2001), A statistical study of transient event motion at geosynchronous orbit, J. Geophys. Res., 106(A10), 21217–21229, doi:10.1029/2000JA000394.
PY - 2001/10
Y1 - 2001/10
N2 - The geosynchronous GOES 5 and GOES 6 satellites frequently observe transient events marked by magnetic field strength increases and bipolar magnetic field signatures lasting several minutes. In this study we report a survey of 87 events observed simultaneously by both GOES spacecraft (for a total of 174 individual observations) from August to December 1984. Events detected in the prenoon sector outnumbered those in the postnoon sector by about a 3 to 1 ratio. The distribution of the events versus local time exhibited a significant prenoon peak like the distribution of magnetic impulse events observed in high-latitude ground magnetometers. A cross-correlation analysis of the two GOES data sets indicated lags that range from 0 to over 2 min, with the majority of the events moving antisunward. The short lags correspond to azimuthal speeds of hundreds of kilometers per second, greater than flow speeds in the magnetosheath, but less than fast mode waves. The short lags may indicate that the events move primarily latitudinally and/or that transient events are seldom localized, but rather occur over extended, if not global, regions. Investigations of event occurrence versus interplanetary magnetic field (IMF) B z , event motion versus IMF B y , and correspondence between upstream plasma data and the events all indicate that pressure pulses are the likely source of many of the events. About 27% of the events with simultaneous solar wind data were preceded by sharp reversals in one or more IMF components, and nearly all of this particular group of events occurred in the dawn sector. This suggests that the pressure pulses may be commonly generated in the foreshock/bow shock region, since the prenoon magnetopause lies generally behind the quasi-parallel bow shock where such pulses are thought to be triggered by IMF discontinuities. Finally, several events in the data set were also observed by the AMPTE/CCE. These are presented as case studies.
AB - The geosynchronous GOES 5 and GOES 6 satellites frequently observe transient events marked by magnetic field strength increases and bipolar magnetic field signatures lasting several minutes. In this study we report a survey of 87 events observed simultaneously by both GOES spacecraft (for a total of 174 individual observations) from August to December 1984. Events detected in the prenoon sector outnumbered those in the postnoon sector by about a 3 to 1 ratio. The distribution of the events versus local time exhibited a significant prenoon peak like the distribution of magnetic impulse events observed in high-latitude ground magnetometers. A cross-correlation analysis of the two GOES data sets indicated lags that range from 0 to over 2 min, with the majority of the events moving antisunward. The short lags correspond to azimuthal speeds of hundreds of kilometers per second, greater than flow speeds in the magnetosheath, but less than fast mode waves. The short lags may indicate that the events move primarily latitudinally and/or that transient events are seldom localized, but rather occur over extended, if not global, regions. Investigations of event occurrence versus interplanetary magnetic field (IMF) B z , event motion versus IMF B y , and correspondence between upstream plasma data and the events all indicate that pressure pulses are the likely source of many of the events. About 27% of the events with simultaneous solar wind data were preceded by sharp reversals in one or more IMF components, and nearly all of this particular group of events occurred in the dawn sector. This suggests that the pressure pulses may be commonly generated in the foreshock/bow shock region, since the prenoon magnetopause lies generally behind the quasi-parallel bow shock where such pulses are thought to be triggered by IMF discontinuities. Finally, several events in the data set were also observed by the AMPTE/CCE. These are presented as case studies.
KW - geophysical
KW - space physics
UR - https://digitalcommons.lmu.edu/phys_fac/32
M3 - Article
VL - 106
SP - 21217
EP - 21229
JO - Journal of Geophysical Research
JF - Journal of Geophysical Research
IS - A10
ER -