Consistency of Cheeger and Ratio Graph Cuts

Nicolas Garcia Trillos, Dejan Slepcev, James von Brecht, Thomas Laurent, Xavier Bresson

Research output: Contribution to journalArticlepeer-review

Abstract

This paper establishes the consistency of a family of graph-cut- based algorithms for clustering of data clouds. We consider point clouds obtained as samples of a ground-truth measure. We investigate approaches to clustering based on minimizing objective functionals defined on proximity graphs of the given sample. Our focus is on functionals based on graph cuts like the Cheeger and ratio cuts. We show that minimizers of these cuts converge as the sample size increases to a minimizer of a corresponding continuum cut (which partitions the ground truth measure). Moreover, we obtain sharp conditions on how the connectivity radius can be scaled with respect to the number of sample points for the consistency to hold. We provide results for two-way and for multiway cuts. Furthermore we provide numerical experiments that illustrate the results and explore the optimality of scaling in dimension two.

Original languageAmerican English
Pages (from-to)1-46
JournalJournal of Machine Learning Research
Volume17
StatePublished - Oct 2016

Keywords

  • data clustering
  • balanced cut
  • consistency
  • graph partitioning

Disciplines

  • Statistics and Probability

Cite this