TY - JOUR
T1 - Lattice-Ordered Algebras That Are Subdirect Products of Valuation Domains
AU - Henriksen, Melvin
AU - Larson, Suzanne
AU - Martinez, Jorge
AU - Woods, R. G.
N1 - pHenriksen, M., Larson, S., Martinez, J., Woods, R. G.emLattice-Ordered Algebras That Are Subdirect Products of Valuation Domains,/em Transactions of the American Mathematical Society. vol. 345 (1994) pp. 195-221./p
PY - 1994/9
Y1 - 1994/9
N2 - An f-ring (i.e., a lattice-ordered ring that is a subdirect product pf totally ordered rings) A is called an SV-ring if AIP is a valuation domain for every prime ideal P of A. If M is a maximal e-ideal of A,then the rank of A at M is the number of minimal prime ideals of A contained in M, rank of A is the sup of the ranks of A at each of its maximal e-ideals. If the latter is a positive integer, then A is said to have finite rank, and if A = C(X) is the ring of all real-valued continuous functions on a Tychonoff space, the rank of X is defined to be the rank of the f-ring C(X),and X is called an SV-space if C(X) is an SV-ring. X has finite rank k iff k is the maximal number of painwise disjoint cozero sets with a point common to all of their closures. In general f-rings these two concepts are unrelated, but if ii is uniformly complete (in particular, if A = C(X)) then if A is an SV-ring then it has finite rank. Showing that this latter holds makes use of the theory of finite-valued lattice-ordered (abelian) groups. These two kinds of rings are investigated with an emphasis on the uniformly complete case. Fairly powerful machinery seems to have to be used, and even then, we do not know if there is a compact space X of finite rank that fails to be an SV-space.
AB - An f-ring (i.e., a lattice-ordered ring that is a subdirect product pf totally ordered rings) A is called an SV-ring if AIP is a valuation domain for every prime ideal P of A. If M is a maximal e-ideal of A,then the rank of A at M is the number of minimal prime ideals of A contained in M, rank of A is the sup of the ranks of A at each of its maximal e-ideals. If the latter is a positive integer, then A is said to have finite rank, and if A = C(X) is the ring of all real-valued continuous functions on a Tychonoff space, the rank of X is defined to be the rank of the f-ring C(X),and X is called an SV-space if C(X) is an SV-ring. X has finite rank k iff k is the maximal number of painwise disjoint cozero sets with a point common to all of their closures. In general f-rings these two concepts are unrelated, but if ii is uniformly complete (in particular, if A = C(X)) then if A is an SV-ring then it has finite rank. Showing that this latter holds makes use of the theory of finite-valued lattice-ordered (abelian) groups. These two kinds of rings are investigated with an emphasis on the uniformly complete case. Fairly powerful machinery seems to have to be used, and even then, we do not know if there is a compact space X of finite rank that fails to be an SV-space.
KW - Rings (Algebra)
KW - Lattice theory
UR - http://www.scopus.com/inward/record.url?scp=84968517733&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84968517733&partnerID=8YFLogxK
U2 - 10.1090/S0002-9947-1994-1239640-0
DO - 10.1090/S0002-9947-1994-1239640-0
M3 - Article
VL - 345
SP - 195
EP - 221
JO - Transactions of the American Mathematical Society
JF - Transactions of the American Mathematical Society
IS - 1
ER -